Signal Integrity

Thumbnail F1

Seriously Funny Science Worth Watching

The Ig Noble Prizes are awarded every year for an individual or group who “did something that makes people laugh and then think.” In our time of increased stress what a perfect combination of activities for engineers to participate and experience: laughing and thinking.


Read More
thumb rev

Convergence: Key to 224 Gbps PAM4 System Design

Convergence in technology is not a new idea. The concept infers that disparate technologies evolve to a closer association or integration over time. Convergence occurs when any number of technologies, such as micro twinax cables, ASIC design, interconnects, advanced IC packaging, and others combine to offer a unique system-level solution. Many see convergence as required for 224 Gbps PAM4 system performance. 


Read More
thumb

The Truth About High-Speed Connector Design

It’s Not as Simple as Just Putting Metal and Plastic Together

In the high-speed connector design arena, there are two opposing ideas. For some people, if you simply put pieces of plastic and metal together, eventually you have a signal transmission. This process is very simple. On the other end of the spectrum, there is the idea that a solid connector design requires a deep understanding of electromagnetic theory, a wisdom only sorcerers and wizards possess.


Read More
Thumbprint F3

What Happens When Stripline Signals Cross Split Power Planes

Many claim that for stripline, it is ok to cross a split power plane, so long as the other adjacent reference plane is solid. Some others claim if there is an adjacent solid reference plane, less than 5mils away under the split, crosstalk will be mitigated. Read on to see an investigation into what really happens when stripline signals cross split power planes.


Read More
thumb rev

How to Reduce Attenuation in a Differential Channel

The attenuation in a uniform differential pair has two root causes: conductor loss and dielectric loss. By understanding how design decisions affect these two fundamental root causes, we can develop a few simple guiding principles which point us in the right directions to reduce the attenuation of a channel. These are the directions to follow when loss is important. In some cases, increasing the differential impedance will decrease loss, and in some cases it will increase the loss. Read on to see why.


Read More